您当前位置:Machine Learning-Science and Technology期刊投稿发表详细信息
Machine Learning-Science and Technology

Machine Learning-Science and Technology Q1

  • 期刊收录:
  • SCIE
  • Scopus
  • DOAJ
基本信息
  • 期刊ISSN:

    2632-2153

  • 期刊简拼:

  • 年发文章数:

    194

  • E-ISSN:

  • Gold OA文章占比

    99.53%

  • 研究文章占比:

    98.97%

  • 是否OA:

    Yes

  • Jcr分区:

    Q1

  • 中科院分区:

    2区

出版信息
  • 出版商:

    IOP PUBLISHING LTD

  • 涉及研究方向:

    Computer Science-Artificial Intelligence

  • 出版国家:

    ENGLAND

  • 出版语言:

    English

  • 出版周期:

    Quarterly

  • 出版年份:

    2020

  • 2023-2024最新影响因子:6.3
  • 自引率:6.30%
  • 五年影响因子:6.4
  • JCI期刊引文指标:1.16
  • h-index:暂无h-index数据
  • CiteScore:9.10

期刊简介

Machine Learning: Science and Technology™ is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories:


i) advance the state of machine learning-driven applications in the sciences,

or

ii) make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.

Particular areas of scientific application include (but are not limited to):
• Physics and space science

• Design and discovery of novel materials and molecules

• Materials characterisation techniques

• Simulation of materials, chemical processes and biological systems

• Atomistic and coarse-grained simulation

• Quantum computing

• Biology, medicine and biomedical imaging

• Geoscience (including natural disaster prediction) and climatology

• Particle Physics

• Simulation methods and high-performance computing


Conceptual or methodological advances in machine learning methods include those in (but are not limited to):
• Explainability, causality and robustness

• New (physics inspired) learning algorithms

• Neural network architectures

• Kernel methods

• Bayesian and other probabilistic methods

• Supervised, unsupervised and generative methods

• Novel computing architectures

• Codes and datasets

• Benchmark studies

《Machine Learning-Science and Technology》期刊已被查看:

此期刊被最新的JCR期刊SCIE收录

期刊信息

  • 通讯地址
  • IOP PUBLISHING LTD, TEMPLE CIRCUS, TEMPLE WAY, BRISTOL, ENGLAND, BS1 6BE
  • 中国科学院《国际期刊预警名单(试行)》名单
  • 2024年02月发布的2024版:不在预警名单中
    2023年01月发布的2023版:不在预警名单中
    2021年12月发布的2021版:不在预警名单中
    2020年12月发布的2020版:不在预警名单中
    此期刊被最新的JCR期刊SCIE收录
  • 审稿速度
  • 收录数据库
  • 是否oa
  • 研究方向
  • 期刊官网数据:平均Submission to first decision before peer review: 3 days; Submission to first decision after peer review: 49 days;5 Weeks
  • SCIE,Scopus,DOAJ
  • Yes
  • Computer Science-Artificial Intelligence

分区信息

中科院分区
  • 大类学科
  • 分区
  • 小类学科
  • Top期刊
  • 综述期刊
  • 物理与天体物理
  • 2区
  • COMPUTER SCIENCE
    ARTIFICIAL INTELLIGENCE
    计算机:人工智能
    MULTIDISCIPLINARY SCIENCES
    综合性期刊
    COMPUTER SCIENCE
    INTERDISCIPLINARY APPLICATIONS
    计算机:跨学科应用
WOS分区等级:1区
  • 版本
  • 按学科
  • 分区
  • 影响因子
  • WOS期刊SCI分(2023-2024年最新版)
  • COMPUTER SCIENCE
    ARTIFICIAL INTELLIGENCE
    COMPUTER SCIENCE
    INTERDISCIPLINARY APPLICATIONS
    MULTIDISCIPLINARY SCIENCES
  • Q1
  • 6.3
IF值(影响因子)趋势图
年发文量趋势图
自引率趋势图
中科院分区

常见问题

Machine Learning-Science and Technology相关文章