您当前位置:Data Science and Engineering期刊投稿发表详细信息
Data Science and Engineering

Data Science and Engineering Q1

  • 期刊收录:
  • ESCI
  • Scopus
  • DOAJ
基本信息
  • 期刊ISSN:

    2364-1185

  • 期刊简拼:

  • 年发文章数:

    33

  • E-ISSN:

    2364-1541

  • Gold OA文章占比

    100.00%

  • 研究文章占比:

    90.91%

  • 是否OA:

    Yes

  • Jcr分区:

    Q1

  • 中科院分区:

    2区

出版信息
  • 出版商:

    Springer Nature

  • 涉及研究方向:

    Engineering-Computational Mechanics

  • 出版国家:

    Germany

  • 出版语言:

    English

  • 出版周期:

    4 issues per year

  • 出版年份:

    0

  • 2023-2024最新影响因子:5.1
  • 自引率:5.90%
  • 五年影响因子:3.6
  • JCI期刊引文指标:1.04
  • h-index:暂无h-index数据
  • CiteScore:10.40

期刊简介

The journal of Data Science and Engineering (DSE) responds to the remarkable change in the focus of information technology development from CPU-intensive computation to data-intensive computation, where the effective application of data, especially big data, becomes vital. The emerging discipline data science and engineering, an interdisciplinary field integrating theories and methods from computer science, statistics, information science, and other fields, focuses on the foundations and engineering of efficient and effective techniques and systems for data collection and management, for data integration and correlation, for information and knowledge extraction from massive data sets, and for data use in different application domains. Focusing on the theoretical background and advanced engineering approaches, DSE aims to offer a prime forum for researchers, professionals, and industrial practitioners to share their knowledge in this rapidly growing area. It provides in-depth coverage of the latest advances in the closely related fields of data science and data engineering. More specifically, DSE covers four areas: (i) the data itself, i.e., the nature and quality of the data, especially big data; (ii) the principles of information extraction from data, especially big data; (iii) the theory behind data-intensive computing; and (iv) the techniques and systems used to analyze and manage big data. DSE welcomes papers that explore the above subjects. Specific topics include, but are not limited to: (a) the nature and quality of data, (b) the computational complexity of data-intensive computing,(c) new methods for the design and analysis of the algorithms for solving problems with big data input,(d) collection and integration of data collected from internet and sensing devises or sensor networks, (e) representation, modeling, and visualization of  big data,(f)  storage, transmission, and management of big data,(g) methods and algorithms of  data intensive computing, such asmining big data,online analysis processing of big data,big data-based machine learning, big data based decision-making, statistical computation of big data, graph-theoretic computation of big data, linear algebraic computation of big data, and  big data-based optimization. (h) hardware systems and software systems for data-intensive computing, (i) data security, privacy, and trust, and(j) novel applications of big data.

《Data Science and Engineering》期刊已被查看:

此期刊被最新的JCR期刊ESCI收录

期刊信息

  • 通讯地址
  • 中国科学院《国际期刊预警名单(试行)》名单
  • 2024年02月发布的2024版:不在预警名单中
    2023年01月发布的2023版:不在预警名单中
    2021年12月发布的2021版:不在预警名单中
    2020年12月发布的2020版:不在预警名单中
    此期刊被最新的JCR期刊ESCI收录
  • 审稿速度
  • 收录数据库
  • 是否oa
  • 研究方向
  • 12 Weeks
  • ESCI,Scopus,DOAJ
  • Yes
  • Engineering-Computational Mechanics

分区信息

中科院分区
  • 大类学科
  • 分区
  • 小类学科
  • Top期刊
  • 综述期刊
  • 计算机科学
  • 2区
  • COMPUTER SCIENCE
    INFORMATION SYSTEMS
    计算机:信息系统
    COMPUTER SCIENCE
    THEORY & METHODS
    计算机:理论方法
WOS分区等级:1区
  • 版本
  • 按学科
  • 分区
  • 影响因子
  • WOS期刊SCI分(2023-2024年最新版)
  • COMPUTER SCIENCE
    INFORMATION SYSTEMS
    COMPUTER SCIENCE
    THEORY & METHODS
  • Q1
  • 5.1
IF值(影响因子)趋势图
年发文量趋势图
自引率趋势图
中科院分区

常见问题

Data Science and Engineering相关文章