FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY Q1
- 期刊收录:
- SCIE
- Scopus
- 期刊ISSN:
0218-348X
- 期刊简拼:
FRACTALS
- 年发文章数:
327
- E-ISSN:
1793-6543
- Gold OA文章占比
39.15%
- 研究文章占比:
99.69%
- 是否OA:
No
- Jcr分区:
Q1
- 中科院分区:
3区
- 出版商:
World Scientific Publishing Co. Pte Ltd
- 涉及研究方向:
数学-数学跨学科应用
- 出版国家:
SINGAPORE
- 出版语言:
English
- 出版周期:
Quarterly
- 出版年份:
1993
- 2023-2024最新影响因子:3.3
- 自引率:24.20%
- 五年影响因子:3.1
- JCI期刊引文指标:1.63
- h-index:36
- CiteScore:7.40
期刊简介
The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes.
Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality.
The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.
《FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY》期刊已被查看: 次
期刊简写:FRACTALS
此期刊被最新的JCR期刊SCIE收录
期刊信息
- PubMed Central (PMC)链接
- http://www.ncbi.nlm.nih.gov/nlmcatalog?term=0218-348X%5BISSN%5D
- 通讯地址
- WORLD SCIENTIFIC PUBL CO PTE LTD, 5 TOH TUCK LINK, SINGAPORE, SINGAPORE, 596224
- 中国科学院《国际期刊预警名单(试行)》名单
-
2024年02月发布的2024版:不在预警名单中
2023年01月发布的2023版:不在预警名单中
2021年12月发布的2021版:不在预警名单中
2020年12月发布的2020版:不在预警名单中
此期刊被最新的JCR期刊SCIE收录
- 审稿速度
- 收录数据库
- 是否oa
- 研究方向
- >12周,或约稿
- SCIE,Scopus
- No
- 数学-数学跨学科应用
分区信息
- 大类学科
- 分区
- 小类学科
- Top期刊
- 综述期刊
- 数学
- 3区
- MULTIDISCIPLINARY SCIENCES
综合性期刊
MATHEMATICS
INTERDISCIPLINARY APPLICATIONS
数学跨学科应用 - 否
- 否
- 版本
- 按学科
- 分区
- 影响因子
- WOS期刊SCI分(2023-2024年最新版)
- MATHEMATICS
INTERDISCIPLINARY APPLICATIONS
MULTIDISCIPLINARY SCIENCES - Q1
- 3.3
IF值(影响因子)趋势图
年发文量趋势图
自引率趋势图
中科院分区
常见问题
-
sci四区价格多少算合理?
一篇sci4区是sci里最便宜的了 价格一般在3-4左右,如果有人告诉你几k就能发或者五位数出头,个人建议谨慎一点,不能因为贪小便宜吃大亏如果四区就能满足学
《FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY》同类:数学期刊
-
Journal of the Operations Research Society of China
JCR:4区--分类:数学
影响因子0.9
收录ESCI,Scopus
-
Wiley Interdisciplinary Reviews-Computational Statistics
JCR:1区--分类:数学
影响因子4.4
收录SCIE,Scopus
-
Mathematical Programming Computation
JCR:1区--分类:数学
影响因子4.3
收录SCIE,Scopus
-
Demonstratio Mathematica
JCR:1区--分类:数学
影响因子2
收录SCIE,Scopus,DOAJ
-
Southeast Asian Bulletin of Mathematics
JCR:4区--分类:数学
影响因子0.2
收录ESCI
-
Information and Inference-A Journal of the IMA
JCR:2区--分类:数学
影响因子1.4
收录SCIE,Scopus
-
Journal of Mathematical Study
JCR:2区--分类:数学
影响因子0.8
收录ESCI
-
Journal of Partial Differential Equations
JCR:4区--分类:数学
影响因子0.3
收录ESCI